MA491: Introduction to Real Analysis

Baker University — Spring 2024

Each of the following items refers to the indicated section from the course textbook *Introduction to Real Analysis* (Fourth Edition) by Robert G. Bartle and Donald R. Sherbert.

Exam 1: Essential Properties of Real Numbers
--

date	day	section	$\operatorname{topic}(s)$
			\circ sets and functions
1/29	М	Chapter 1: Preliminaries	\circ mathematical induction
			\circ finite and infinite sets
			• field operations
1/31	W	§2.1: The Algebraic and Order Properties of \mathbb{R}	\circ (ir)rational numbers
			\circ inequalities
			• absolute value
2/2	F	§2.2 Absolute Value and the Real Line	• Triangle Inequality
			\circ neighborhoods

date	day	section	$\operatorname{topic}(s)$
2/5	М	§2.3: The Completeness Property of \mathbb{R}	\circ upper and lower bounds
2/0	101	$g_{2.5.}$ The Completeness Froperty of \mathbb{R}	\circ suprema and infima
			• bounded functions
2/7	W	§2.4: Applications of the Supremum Property	• Archimedean Property
			\circ density of \mathbb{Q} in \mathbb{R}
			\circ open- and closedness
2/9	\mathbf{F}	F §2.5: Intervals	\circ nested intervals
			\circ uncountability of $\mathbb R$

date	day	section	$\operatorname{topic}(s)$
2/12	М	Exam 1 Review	
2/14	W	Exam 1 Review	Exam 1 Practice Test
2/16	F	Exam 1	 §1.1: Sets and Functions §1.2: Mathematical Induction §1.3: Finite and Infinite Sets §2.1: The Algebraic and Order Properties of R §2.2: Absolute Value and the Real Line §2.3: The Completeness Property of R §2.4: Applications of the Supremum Property §2.5: Intervals

date	day	section	$\operatorname{topic}(s)$	
2/10	М	§3.1: Sequences and Their Limits	• convergence of sequences	
2/19	101		\circ uniqueness of limits	
		W §3.2: Limit Theorems	• boundedness	
2/21	W		\circ Squeeze Theorem	
			\circ algebraic operations	
			• monotonicity	
2/23	F	F §3.3: Monotone Sequences	\circ Monotone Convergence Theorem	
			\circ applications and examples	

Exam 2: Sequences of Real Numbers

date	day	section	topic(s)
	М	§3.4: The Bolzano-Weierstrass Theorem	• subsequences
2/26			• Divergence Criterion
2/20	М		• Monotone Subsequence Th'm
			\circ Bolzano-Weierstrass Th'm
2/20	117	\$2.5. The Couchy Criterion	• Cauchy sequences
2/28	W	§3.5: The Cauchy Criterion	• Cauchy Convergence Criterion
2 /1	F	S2 6. Dronorly Divergent Seguences	\circ infinite limits
3/1	F.	§3.6: Properly Divergent Sequences	\circ Monotone Convergence Th'm

date	day	section	$\operatorname{topic}(s)$	
3/4	М	Exam 2 Review		
3/6	W	Exam 2 Review	Exam 2 Practice Test	
3/8	F	Exam 2	 §3.1: Sequences and Their Limits §3.2: Limit Theorems §3.3: Monotone Sequences §3.4: Subsequences and the Bolzano-Weierstrass Th'm §3.5: The Cauchy Criterion §3.6: Properly Divergent Sequences 	

Exam 3: Limits and Continuity

date	day	section	$\operatorname{topic}(s)$
			\circ cluster points
9/11	М	\$4.1. Limits of Functions	\circ uniqueness of limits
3/11	IVI	§4.1: Limits of Functions	\circ Sequential Criterion
			\circ Divergence Criteria
9/19	W	84.9. Limit Theorems	• algebraic operations
3/13	vv	§4.2: Limit Theorems	\circ Squeeze Theorem
			\circ one-sided limits
2/15	F	F §4.3: Some Extensions of the Limit Concept	\circ infinite limits
3/15	ſ		\circ limits at infinity
			• Comparison Theorems

date	day	section	$\operatorname{topic}(s)$
			• Sequential Criterion
3/25	М	§5.1: Continuous Functions	\circ Discontinuity Criterion
			\circ Dirichlet's function
			• algebraic operations
3/27	W	§5.2: Combinations of Continuous Functions	• polynomial functions
			\circ rational functions

date	day	section	$\operatorname{topic}(s)$
			• Boundedness Theorem
4/1	М	\$5.2. Continuous Functions on Intervals	• Maximum-Minimum Theorem
4/1	IVI	§5.3: Continuous Functions on Intervals	\circ Intermediate Value Theorem
			\circ Preservation of Intervals Th'm
	W	§5.4: Uniform Continuity	• nonuniform continuity
4/2			• Uniform Continuity Th'm
4/3			• Lipschitz functions
			• Continuous Extension Th'm
			• monotonicity
4/5	F	F §5.6: Monotone and Inverse Functions	\circ jump at a point
			\circ Continuous Inverse Theorem

date	day	section	$\operatorname{topic}(s)$
4/8	М	Exam 3 Review	
4/10	W	Exam 3 Review	Exam 3 Practice Test
		F Exam 3	\circ §4.1: Limits of Functions
			\circ §4.2: Limit Theorems
	F		\circ §4.3: Some Extensions of the Limit Concept
4/12			\circ §5.1: Continuous Functions
4/12			\circ §5.2: Combinations of Continuous Functions
			\circ §5.3: Continuous Functions on Intervals
			\circ §5.4: Uniform Continuity
			\circ §5.6: Monotone and Inverse Functions

Exam 4:	Differentiability	and	Integrability
---------	-------------------	-----	---------------

date	day	section	$\operatorname{topic}(s)$
4/15	М	§6.1: The Derivative	 o differentiability o differentiability implies continuity o algebraic operations o Carathéodory's Theorem
4/17	W	Scholars Symposium	• Chain Rule
4/19	F	§6.2: The Mean Value Theorem	 Interior Extremum Theorem Rolle's Theorem First Derivative Test Darboux's Theorem

date	day	section	$\operatorname{topic}(s)$
4/22	М	§6.3: L'Hôpital's Rule	◦ indeterminate form
			• Cauchy Mean Value Theorem
4/24	W	§7.1: Riemann Integral	\circ (tagged) partitions
			\circ norm of a partition
			∘ Riemann sum
			• Riemann integrability
			◦ uniqueness of Riemann integrals
			\circ Boundedness Theorem
	F	§7.2: Riemann Integrable Functions	• Cauchy Criterion
4/26			\circ Squeeze Theorem
			\circ continuity
			\circ monotonicity
			\circ additivity of Riemann integrals

date	day	section	$\operatorname{topic}(s)$
4/29	М	§7.3: The Fundamental Theorem	\circ Substitution Theorem
			\circ Composition Theorem
			\circ Product Theorem
			\circ integration by parts
5/1	W	Exam 4 Review	
	F	Exam 4	◦ §6.1: The Derivative
5/3			\circ §6.2: The Mean Value Theorem
			\circ §6.3: L'Hôpital's Rule
			\circ §7.1: Riemann Integral
			\circ §7.2: Riemann Integrable Functions
			\circ §7.3: The Fundamental Theorem

date	day	section	$\operatorname{topic}(s)$
5/6	М	Final Exam Review	
5/8	W	Final Exam Review	
5/10	F	Final Exam Review	Final Exam Practice Test

Our final exam will be held Friday, May 17 from 1:00 PM to 4:00 PM in Mulvane 201.